Convergence Properties of Block GMRES and Matrix PolynomialsV

نویسندگان

  • V Simoncini
  • E Gallopoulos
چکیده

This paper studies convergence properties of the block gmres algorithm when applied to nonsymmetric systems with multiple right-hand sides. A convergence theory is developed based on a representation of the method using matrix-valued polynomials. Relations between the roots of the residual polynomial for block gmres and the matrix "-pseudospectrum are derived, and illustrated with numerical experiments. The role of invariant subspaces in the eeectiveness of block methods is also discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence Properties of Block GMRES and Matrix Polynomials

This paper studies convergence properties of the block GMRES algorithm when applied to nonsymmetric systems with multiple right-hand sides. A convergence theory is developed based on a representation of the method using matrix-valued polynomials. Relations between the roots of the residual polynomial for block GMHES and the matrix &-pseudospectrum are derived, and illustrated with numerical exp...

متن کامل

Convergence analysis of the global FOM and GMRES methods for solving matrix equations $AXB=C$ with SPD coefficients

In this paper‎, ‎we study convergence behavior of the global FOM (Gl-FOM) and global GMRES (Gl-GMRES) methods for solving the matrix equation $AXB=C$ where $A$ and $B$ are symmetric positive definite (SPD)‎. ‎We present some new theoretical results of these methods such as computable exact expressions and upper bounds for the norm of the error and residual‎. ‎In particular‎, ‎the obtained upper...

متن کامل

Preconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation

Introduction Fractional differential equations (FDEs)  have  attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme  may be a good approach, particularly, the schemes in numerical linear algebra for solving ...

متن کامل

Theoretical results on the global GMRES method for solving generalized Sylvester matrix‎ ‎equations

‎The global generalized minimum residual (Gl-GMRES)‎ ‎method is examined for solving the generalized Sylvester matrix equation‎ ‎[sumlimits_{i = 1}^q {A_i } XB_i = C.]‎ ‎Some new theoretical results are elaborated for‎ ‎the proposed method by employing the Schur complement‎. ‎These results can be exploited to establish new convergence properties‎ ‎of the Gl-GMRES method for solving genera...

متن کامل

Gmres Convergence and the Polynomial Numerical Hull for a Jordan Block

Consider a system of linear algebraic equations with a nonsingular n by n matrix A. When solving this system with GMRES, the relative residual norm at the step k is bounded from above by the so called ideal GMRES approximation. This bound is sharp (it is attainable by the relative GMRES residual norm) in case of a normal matrix A, but it need not characterize the worstcase GMRES behavior if A i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994